Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340057

RESUMO

Fluorinated breakdown products from photolysis of pharmaceuticals and pesticides are of environmental concern due to their potential persistence and toxicity. While mass spectrometry workflows have been shown to be useful in identifying products, they fall short for fluorinated products and may miss up to 90% of products. Studies have shown that 19F NMR measurements assist in identifying and quantifying reaction products, but this protocol can be further developed by incorporating computations. Density functional theory was used to compute 19F NMR shifts for parent and product structures in photolysis reactions. Computations predicted NMR spectra of compounds with an R2 of 0.98. Computed shifts for several isolated product structures from LC-HRMS matched the experimental shifts with <0.7 ppm error. Multiple products including products that share the same shift that were not previously reported were identified and quantified using computational shifts, including aliphatic products in the range of -80 to -88 ppm. Thus, photolysis of fluorinated pharmaceuticals and pesticides can result in compounds that are polyfluorinated alkyl substances (PFAS), including aliphatic-CF3 or vinyl-CF2 products derived from heteroaromatic-CF3 groups. C-F bond-breaking enthalpies and electron densities around the fluorine motifs agreed well with the experimentally observed defluorination of CF3 groups. Combining experimental-computational 19F NMR allows quantification of products identified via LC-HRMS without the need for authentic standards. These results have applications for studies of environmental fate and analysis of fluorinated pharmaceuticals and pesticides in development.

2.
Environ Toxicol Chem ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861370

RESUMO

The aqueous photolysis of four pharmaceuticals with varying fluorinated functional groups was assessed under neutral, alkaline, advanced oxidation, and advanced reduction conditions with varying light sources. Solar simulator quantum yields were 2.21 × 10-1 mol Ei-1 for enrofloxacin, 9.36 × 10-3 mol Ei-1 for voriconazole, and 1.49 × 10-2 mol Ei-1 for flecainide. Florfenicol direct photolysis was slow, taking 150 h for three degradation half-lives. Bimolecular rate constants between pharmaceuticals and hydroxyl radicals were 109 to 1010 M-1 s-1 . Using a combined quantitative fluorine nuclear magnetic resonance spectroscopy (19 F-NMR) and mass spectrometry approach, fluorine mass balances and photolysis product structures were elucidated. Enrofloxacin formed a variety of short-lived fluorinated intermediates that retained the aryl F motif. Extended photolysis time led to complete aryl F mineralization to fluoride. The aliphatic F moiety on florfenicol was also mineralized to fluoride, but the resulting product was a known antibiotic (thiamphenicol). For voriconazole, the two aryl Fs contributed more to fluoride production compared with the heteroaromatic F, indicating higher stability of the heteroaromatic F motif. The two aliphatic CF3 moieties in the flecainide structure remained intact under all conditions, further supporting the stability of these moieties found in per- and polyfluoroalkyl substances under a variety of conditions. The advanced treatment conditions generating hydroxyl radicals or hydrated electrons accelerated the degradation, but not the defluorination, of flecainide. The combination of 19 F-NMR and mass spectrometry proved powerful in allowing identification of fluorinated products and verifying the functional groups present in the intermediates and products. The results found in the present study will aid in the understanding of which fluorinated functional groups should be incorporated into pharmaceuticals to ensure organofluorine byproducts are not formed in the environment and help determine the water-treatment processes that effectively remove specific pharmaceuticals and more generally fluorinated motifs. Environ Toxicol Chem 2023;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Environ Sci Technol ; 57(13): 5327-5336, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36962003

RESUMO

The wavelength dependence of photoproduct formation and quantum yields was evaluated for fluorinated pesticides and pharmaceuticals using UV-light emitting diodes (LEDs) with 255, 275, 308, 365, and 405 nm peak wavelengths. The fluorinated compounds chosen were saflufenacil, penoxsulam, sulfoxaflor, fluoxetine, 4-nitro-3-trifluoromethylphenol (TFM), florasulam, voriconazole, and favipiravir, covering key fluorine motifs (benzylic-CF3, heteroaromatic-CF3, aryl-F, and heteroaromatic-F). Quantum yields for the compounds were consistently higher for UV-C as compared to UV-A wavelengths and did not show the same trend as molar absorptivity. For all compounds except favipiravir and TFM, the fastest degradation was observed using 255 or 275 nm light, despite the low power of the LEDs. Using quantitative 19F NMR, fluoride, trifluoroacetate, and additional fluorinated byproducts were tracked and quantified. Trifluoroacetate was observed for both Ar-CF3 and Het-CF3 motifs and increased at longer wavelengths for Het-CF3. Fluoride formation from Het-CF3 was significantly lower as compared to other motifs. Ar-F and Het-F motifs readily formed fluoride at all wavelengths. For Het-CF3 and some Ar-CF3 motifs, 365 nm light produced either a greater number of or different major products. Aliphatic-CF2/CF3 products were stable under all wavelengths. These results assist in selecting the most efficient wavelengths for UV-LED degradation and informing future design of fluorinated compounds.


Assuntos
Praguicidas , Raios Ultravioleta , Fotólise , Fluoretos , Ácido Trifluoracético , Preparações Farmacêuticas
4.
Environ Sci Technol ; 56(17): 12336-12346, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35972505

RESUMO

The photolysis of pesticides with different fluorine motifs was evaluated to quantify the formation of fluorinated products in buffered aqueous systems, advanced oxidation (AOP) and reduction processes (ARP), and river water. Simulated sunlight quantum yields at pH 7 were 0.0033, 0.0025, 0.0015, and 0.00012 for penoxsulam, florasulam, sulfoxaflor, and fluroxypyr, respectively. The bimolecular rate constants with hydroxyl radicals were 2 to 5.7 × 1010 M-1 s-1 and, with sulfate radicals, 1.6 to 2.6 × 108 M-1 s-1 for penoxsulam, florasulam, and fluroxypyr, respectively. The rate constants of sulfoxaflor were 100-fold lower. Using quantitative 19F-NMR, complete fluorine mass balances were obtained. The maximum fluoride formation was 53.4 and 87.4% for penoxsulam and florasulam under ARP conditions, and 6.1 and 100% for sulfoxaflor and fluroxypyr under AOP conditions. Heteroaromatic CF3 and aliphatic CF2 groups were retained in multiple fluorinated photoproducts. Aryl F and heteroaromatic F groups were readily defluorinated to fluoride. CF3 and CF2 groups formed trifluoroacetate and difluoroacetate, and yields increased under oxidizing conditions. 19F-NMR chemical shifts and coupling analysis provided information on hydrogen loss on adjacent bonds or changes in chirality. Mass spectrometry results were consistent with the observed 19F-NMR products. These results will assist in selecting treatment processes for specific fluorine motifs and in the design of agrochemicals to reduce byproduct formation.


Assuntos
Flúor , Praguicidas , Fluoretos , Radical Hidroxila/química , Fotólise
5.
ACS Environ Au ; 2(3): 242-252, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37102144

RESUMO

Fluorine incorporation into organic molecules has increased due to desirable changes in the molecular physiochemical properties. Common fluorine motifs include: aliphatic fluorines and -CF3, or -F containing groups bonded directly onto an aromatic (Ar-CF3 and Ar-F) or heteroaromatic ring. Photolysis of these compounds, either in natural or engineered systems, is a potential source of new fluorinated byproducts. Given the potential persistence and toxicity of fluorinated byproducts, monitoring of product formation during photolysis of various fluorinated motifs is needed. 19F-NMR is a means to detect and quantify these species. Ar-CF3 and Ar-F model compounds (2-, 3-, and 4-(trifluoromethyl)phenol, 2-, 3-, 4-fluorophenol, and 2,6-, 3,5-difluorophenol) were photolyzed under a variety of aqueous conditions: pH 5, pH 7, pH 10, 1 mM H2O2 at pH 7 to form •OH, and 0.5 mM SO3 2- at pH 10 to form eaq -. Pharmaceuticals with the Ar-CF3 (fluoxetine) and Ar-F plus pyrazole-CF3 (sitagliptin) motifs were treated similarly. Parent molecule concentrations were monitored with high pressure liquid chromatography with a UV detector. Fluorine in the parent and product molecules was quantified with 19F-NMR and complete fluorine mass balances were obtained. High resolution mass spectrometry was used to further explore product identities. The major product for Ar-F compounds was fluoride. The Ar-CF3 model compounds led to fluoride and organofluorine products dependent on motif placement and reaction conditions. Trifluoroacetic acid was a product of 4-(trifluoromethyl)phenol and fluoxetine. Additional detected fluoxetine products identified using mass spectrometry resulted from addition of -OH to the aromatic ring, but a dealkylation product could not be distinguished from fluoxetine by 19F-NMR. Sitagliptin formed multiple products that all retained the pyrazole-CF3 motif while the Ar-F motif produced fluoride. 19F-NMR, mass spectrometry, and chromatography methods provide complementary information on the formation of fluorinated molecules by modification or fragmentation of the parent structure during photolysis, allowing screening for fluorinated photoproducts and development of fluorine mass balances.

6.
Ultrason Sonochem ; 71: 105368, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125965

RESUMO

Hair waste in large amount is produced in India from temples and saloons, India alone exported approximately 1 million kg of hair in 2010. Incineration and degradation of waste human hair leads to environmental concerns. The hydrothermal process is a conventional method for the production of hair hydrolysate. The hydrothermal process is carried out at a very high temperature and pressure, which causes the degradation of heat-sensitive essential amino acids, thereby depleting the nutritional value. This work deals with alkaline hydrolysis of human hair using acoustic and hydrodynamic cavitation, and comparison with the conventional method. The optimal operating conditions for highest efficiency was observed, for the hydrolysis of 1 g of sample hairs in 100 mL of solution, at 4:1 (KOH: hair) ratio, soaking time of 24 h, the ultrasonic power density of 600 W dm-3 (20 KHz frequency and input power 200 W) or hydrodynamic cavitation inlet pressure of 4 or 7 bars. Cavitation results in rupture of disulfide linkages in proteins and mechanical effects lead to cleavage of several hydrogen bonds breaking the keratin sheet structure in hair. Breakdown of bonds leads to a decrease in viscosity of the solution. 10% and 6% reduction in viscosity is obtained at optimal conditions for ultrasonic and hydrodynamic cavitation treatment, respectively. FTIR analysis of produced hair hydrolysate confirmed that the disulfide bonds in hair proteins are broken down during cavitation. The amino acid of hair hydrolysate, prepared using cavitation, has a relatively higher digestibility and nutritional value due to the enhancement of amino-acid content, confirmed using amino acid analysis. Cavitation assisted hair hydrolysate has a potential application in agricultural engineering as a fertilizer for improvement of the quality of the soil and land. Cavitation based hair hydrolysate can also be used as an environmentally friendly and economical source of essential amino acids and digestibles for animal or poultry feed.


Assuntos
Acústica , Aminoácidos/química , Cabelo/química , Hidrodinâmica , Animais , Humanos , Hidrólise , Ondas Ultrassônicas
7.
J Hazard Mater ; 403: 123657, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264866

RESUMO

Nitrogen-containing amino and azo compounds are widely used in textile, agricultural and chemical industries. Most of these compounds have been demonstrated to be resistant to conventional degradation processes. Advanced oxidation processes can be effective to mineralize nitrogen-containing compounds and improve the efficacy of overall treatment schemes. Due to a global concern for the occurrence of toxic and hazardous amino-compounds and their harmful degradation products in water, it is important to develop technologies that focus on all the aspects of their degradation. Our focus is to present a state-of-the-art review on the degradation of several amine- and azo-based compounds using advanced oxidation processes. The categories reviewed are aromatic amines, aliphatic amines, N-containing dyes and N-containing pesticides. Data has been compiled for degradation efficiencies of each process, reaction mechanisms focusing on specific attack of oxidants on N atoms, the effect of process parameters like pH, initial concentration, time of treatment, etc. and identification of intermediates. Several AOPs have been compared to provide a systematic overview of available literature that will drive essential aspects of future research on amine-based compounds. Ozone is observed to be highly reactive to most amines, dyes and pesticides, followed by Fenton processes. Degradation of amines is highly sensitive to pH and mechanisms differ at different pH values. Cavitation is a promising alternative pre-treatment method for cost reduction. Hybrid methods under optimized conditions are demonstrated to give synergistic effects and must be tailored for specific effluents in question. In conclusion, even though nitrogen-containing compounds are recalcitrant in nature, the use of advanced oxidation processes at carefully established optimum conditions can yield highly efficient degradation of the compounds.

8.
Water Res X ; 3: 100027, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31193985

RESUMO

Capacitive deionization (CDI) with electric double layers is an electrochemical desalination technology in which porous carbon electrodes are polarized to reversibly store ions. Planar composite CDI electrodes exhibit poor energetic performance due the resistance associated with salt depletion and tortuous diffusion in the macroporous structure. In this work, we investigate the impact of bi-tortuosity on desalination performance by etching macroporous patterns along the length of activated carbon porous electrodes in a flow-by CDI architecture. Capacitive electrodes were also coated with thin asymmetrically charged polyelectrolytes to improve ion-selectivity while maintaining the bitortuous macroporous channels. Under constant current operation, the equivalent circuit resistance in CDI cells operating with bi-tortuous electrodes was approximately 2.2 times less than a control cell with unpatterned electrodes, leading to significant increases in working capacitance (20-22 to 26.7-27.8 F g-1), round-trip efficiency (52-71 to 71-80%), and charge efficiency (33-59 to 35-67%). Improvements in these key performance indicators also translated to enhanced salt adsorption capacity, rate, and most importantly, the thermodynamic efficiency of salt separation (1.0-2.0 to 2.2-4.1%). These findings demonstrate that the use of bi-tortuous electrodes is a novel approach of reducing impedance to ionic flux in CDI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...